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We propose a general theoretical framework to analyze the security of Physical

Uncloneable Functions (PUFs). We apply the framework to optical PUFs. In

particular we present a derivation, based on the physics governing multiple scat-

tering processes, of the number of independent challenge-response pairs supported

by a PUF. We �nd that the number of independent challenge-response pairs is

proportional to the square of the thickness of the PUF and inversely proportional

to the scattering length and the wavelength of the laser light. We compare our

results to those of Pappu and show that they coincide in the case where the den-

sity of scatterers becomes very high. Finally, we discuss some attacks on PUFs,

and introduce the Slow PUF as a way to thwart brute force attacks.
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1 Introduction

1.1 Physical Uncloneable Functions

A `Physical Uncloneable Function' (PUF) is a function that is realized by a phys-
ical system, such that the function is easy to evaluate but the physical system is
hard to characterize [1, 2]. PUFs have been proposed as a cost-e�ective way to
produce uncloneable tokens for identi�cation [3]. The identi�cation information
is contained in a cheap, randomly produced (i.e. consisting of many random com-
ponents), highly complicated piece of material. The secret identi�ers are read
out by performing measurements on the physical system and performing some
additional computations on the measurement results. The advantage of PUFs
over electronic identi�ers lies in the following facts: (1) Since PUFs consist of
many random components, it is very hard to make a clone, either a physical copy
or a computer model, (2) PUFs provide inherent tamper-evidence due to their
sensitivity to changes in measurement conditions, (3) Data erasure is automatic
if a PUF is damaged by a probe, since the output strongly depends on many
random components in the PUF. Additionally one can extract cryptographic
keys from a PUF. This makes PUFs attractive for Digital Rights Management
(DRM) systems.

The physical system is designed such that it interacts in a complicated way
with stimuli (challenges) and leads to unique but unpredictable responses. Hence,
a PUF is similar to a keyed hash function. The key is the physical system con-
sisting of many \random" components. In order to be hard to characterize, the



system should not allow eÆcient extraction of the relevant properties of its inter-
acting components by measurements. Physical systems that are produced by an
uncontrolled production process, i.e. one that contains some randomness, turn
out to be good candidates for PUFs. Because of this randomness, it is hard to
produce a physical copy of the PUF. Furthermore, if the physical function is
based on many complex interactions, then mathematical modeling is also very
hard. These two properties together are referred to as Uncloneability. From a
security perspective the uniqueness of the responses and uncloneability of the
PUF are very useful properties. Because of these properties, PUFs can be used
as unique identi�ers for smart-cards and credit cards or as a `cheap' source for
key generation (common randomness) between two parties.

At the moment there are several main candidates: optical PUFs [3, 4], silicon
PUFs [2, 5], coating PUFs [6] and acoustic PUFs [6]. Silicon PUFs make use of
production variation in the properties of logical gates. When these are probed
at frequencies that are out of spec, a unique, unpredictable response is obtained
in the form of delay times. Coating PUFs are integrated with an IC. The IC is
covered with a coating, which is doped with several kinds of particles of random
size and shape with a relative dielectric constant di�ering from the dielectric
constant of the coating matrix. An array of metal sensors is laid down between
the substrate and the passivation layer. A challenge corresponds to a voltage of a
certain frequency and amplitude applied to the sensors at a certain point of the
sensor array. The response, i.e. the capacitance value, is then turned into a key. In
an acoustic PUF, one measures the response of a token to an acoustic wave. An
electrical signal is transformed to a mechanical vibration through a transducer.
This vibration propagates as a sound wave through the token and scatters on the
randomly distributed inhomogeneities. The reections are measured by another
transducer which converts the vibration back into an electric signal. It turns out
that the reections are unique for each token.

Fig. 1. Left: Card equipped with an optical PUF. Right: Reading device.

Optical PUFs contain randomly distributed light scattering particles. A picture
of an optical PUF and its reading device is shown in Fig. 1. They exploit the
uniqueness of speckle patterns that result from multiple scattering of laser light
in a disordered optical medium. The challenge can be e.g. the angle of incidence,
focal distance or wavelength of the laser beam, a mask pattern blocking part



of the laser light, or any other change in the wave front. The response is the
speckle pattern. An input-output pair is usually called a Challenge-Response

Pair (CRP). Physical copying is diÆcult for two reasons: (i) The light di�u-
sion obscures the locations of the scatterers. At this moment the best physical
techniques can probe di�usive materials up to a depth of �10 scattering lengths
[7]. (ii) Even if all scatterer locations are known, precise positioning of a large
number of scatterers is very hard and expensive, and this requires a process
di�erent from the original randomized process. Modeling, on the other hand, is
diÆcult due to the inherent complexity of multiple coherent scattering [8]. Even
the `forward' problem turns out to be hard1.

The goal of this paper is to show how cryptographic tools based on (classical)
physical functions can be modeled and rigorously analyzed in a cryptographic
context. We derive an information-theoretic framework for PUFs and investigate
the security level of optical PUFs. More in particular, we analyze the number
of independent CRPs of a PUF, i.e. CRPs whose responses are not predictable
using previously obtained CRPs. We derive a formula that gives the number
of independent CRPs supported by an optical PUF in terms of its physical
parameters. In section 2.1, we derive the model starting from the physics of
multiple scattering. The security analysis, and in particular the computation of
the number of independent CRPs, is presented in section 3. Finally, in section 4
we discuss brute force attacks. In particular, we introduce the `slow PUF' as a
way of thwarting these attacks.

1.2 Applications

Optical PUFs are well suited for identi�cation, authentication and key genera-
tion [3, 6]. The goal of an identi�cation protocol is to check whether a speci�c
PUF is present at the reader. The goal of an authentication protocol is to ensure
that received messages originate from the stated sender. For authentication it
is therefore the objective to extract the same cryptographic key from the PUF
as the one that is stored at the Veri�er's database during enrollment, while for
identi�cation it is suÆcient if the response is close to the enrolled response.

In order to use PUFs for above mentioned purposes they are embedded into
objects such as smartcards, creditcards, the optics of a security camera, etc.,
preferably in an inseparable way, meaning that the PUF gets damaged if an
attacker attempts to remove the PUF. This makes the object in which a PUF
is embedded uniquely identi�able and uncloneable. Secret keys can be derived
from a PUF's output [6] by means of protocols similar to those developed in the
context of biometrics [10, 11].

The usage of a PUF consists of two phases: enrolment and veri�cation. During
the enrolment phase, the Veri�er produces the PUF and stores an initial set of
CRPs securely in his database. Then the PUF is embedded in a device and given

1 Given the details of all the scatterers, the fastest known computation method of a

speckle pattern is the transfer-matrix method [9]. It requires in the order of N3

modd=�

operations (see section 3.2 for the de�nition of Nmod, d and �).



to a user. The veri�cation phase starts when the user presents his device to a
terminal. The Veri�er sends a randomly chosen PUF challenge from his database
to the user. If the Veri�er receives the correct response from the device, the device
is identi�ed. Then this CRP is removed from the database and will never be used
again.

If, additionally, the device and the Veri�er need to exchange secret messages,
a secure authenticated channel is set up between them, using a session key based
on the PUF response. We present the following protocols.
Identi�cation Protocol:

{ User: Puts his card with PUF in the reader and claims its ID.
{ Veri�er: Randomly chooses a challenge C from his CRP database and sends
it to the User.

{ Reader: Challenges the PUF with the Challenge C, measures the Response
R and computes an identi�er S0. S0 is sent back to the Veri�er.

{ Veri�er: Checks whether S0 equals the identi�er S stored in his database
during enrollment. Then he removes the pair (C; S) from his database and
never uses it again.

We note that the security of this protocol relies on the fact that an attacker who
has seen (C1; S1) cannot predict the identi�er S2 corresponding to the challenge
C2, and on the fact that the PUF supports a large number of CRPs.

Authentication Protocol:

{ User: Puts his card with PUF in the reader and claims its ID.

{ Veri�er: Randomly chooses a challenge C from his CRP database and sends
it to the User, together with a random nonce m.

{ Reader: Challenges the PUF with the Challenge C, measures the Response
R and computes a key S0. MS0(m) is sent to the Veri�er, where MS0(m)
denotes a MAC on m, using the key S0.

{ Veri�er: Computes MS(m) with the key S stored in his database and com-
pares it with MS0(m). If they are equal, then S = S0 with very high proba-
bility. The key S is then used to MAC and/or encrypt all further messages.

The security of this scheme depends on the fact that (when the key S is unknown)
the MAC MS(m) is unpredictable given that the attacker has seen the MAC on
a message m1 6= m.

1.3 Notation

We introduce the following notation. The power of the laser is denoted by P

and its wavelength by �. The thickness of the PUF is denoted by d. Scattering
is assumed to be elastic2, with mean free path3 `. We further assume di�usive

2 Elastic scattering means that the photons do not lose energy when they are scattered.
3 The mean free path is the average distance travelled by the photons between two

scattering events.



scattering, i.e. � � ` � d. The illuminated area of the PUF is A = W 2. For
simplicity the output surface area is also taken to be A. The detector needs
time 4t to record a speckle pattern. The following numerical values will be used
by way of example: W = 1 mm; d = 1 mm; ` = 10 �m; � = 500 nm; P =
1 mW; 4t = 1 ms. Note that the total area of the PUF (APUF) can be much
larger than the illuminated area A. We will use APUF =5cm2. Throughout this
paper we will mostly calculate properties of one speci�c volume Ad, and only
afterwards adjust our results by a factor APUF=A. This e�ectively amounts to
treating the PUF of area APUF as a collection of independent PUFs of area A.

2 Information Theory of PUFs

2.1 General PUF Model

A PUF can be modeled as a function mapping challenges to responses. We
denote the challenge space by A and the response space by R. A PUF is then
a parametrized function �K : A ! R whose behaviour is determined by the
physical interactions. The parameterK belongs to the parameter space K and is
determined by a large number of random variables, namely the physical structure
of the PUF. Hence, the space K models the space of all possible PUFs and there
is a one to one correspondence between the elements of K and the set of PUFs.
In order to express the uncertainy about the random variable K, described by
the probability measure �, we use the Shannon entropy H�(K)

H�(K) = �
jKjX
i=1

�(Ki) log �(Ki); (1)

where jKj denotes the size of K. Sometimes we will also need the conditional
entropy H(KjR), representing the uncertainty about K given that one knows a
response R. The mutual information between K and R is denoted as I(K;R).
For the precise de�nitions of these notions we refer the reader to textbooks on
information theory, e.g. [12]. The notation \log" denotes the logarithm with
base 2.

One of the important quantities used in this paper is the size of the parameter
space K, representing the information content of a PUF. Therefore we have to
make a precise de�nition of this quantity. To this end, we start by de�ning
some abstract notions and later we make those notions concrete by means of an
example. First, we present a brief computation that motivates the de�nitions
that we introduce. The amount of information about the PUF that is revealed
by one response is given by the mutual information I(K;R) = H(K)�H(KjR).
We show that the mutual information is actually equal to H(R). First we observe
that H(K) = H(K;R), since given the PUF, the speckle pattern is �xed. Using
the identity H(K;R) = H(R) + H(KjR) we obtain

I(K;R) = H(R): (2)



2.2 De�nitions

The information content of a PUF (H�(K)) and of its output (H(R)) depends
on the measurements that can be performed on the system. This is formalized
as follows. We identify a measurement with its possible outcomes.

De�nition 1 A measurement M is a partition fR1; � � � ; Rmg of K.

Here Rj is the set in K containing all PUFs that produce outcome j upon
measurementM, and m is the number of possible outcomes. Two measurements
give more (re�ned) information than one. The composition of two measurements
is denoted as M1 _M2 and is de�ned as follows:

M1 _M2 = fR(1)
i \ R(2)

j gmi;j=1: (3)

R
(i)
j is the set of all PUFs that produce outcome j upon measurement Mi. By

induction this de�nition extends to composition of more than two measurements.

De�nition 2 Let � denote a probability measure on K. The information ob-

tained about a system K 2 K by performing measurement M is de�ned as

hM(K) = �
mX
i=1

�(Ri) log �(Ri):

We note that the following monotonicity property can easily be proven

hM1_M2
� hM1

; (4)

which corresponds to the fact that �ner measurements give more information.
Due to the physics, one will often only have a �nite set A of challenges available.
This set restricts the amount of information that can be obtained.

De�nition 3 4 Given the set A of possible measurements, the total amount of

information that can be obtained about a system K is

hA(K) = sup
M1;:::;Mq2A; 0<q�jAj

hM1_:::_Mq
(K):

It follows from the monotonicity property (4) that hA(K) � H(K), i.e. the
maximum amount of information that can be obtained about a system is upper
bounded by the amount of uncertainty one has in the measure �. If � is given
by the random measure �(Ki) = 1=jKj, we �nd that H(K) = log(jKj). In the
remainder of this text, we will assume that � is given by this measure.

De�nitions 1 and 2 are very general and apply to many kinds of PUFs. In this
framework, the couple (K, A) has to be speci�ed for a well-de�ned notion of PUF
security. We consider two extreme cases to illustrate the de�nitions. If A contains

4 We note that this de�nition is in agreement with the theory of dynamical systems

and dynamical entropy [13].



a CRP measurement that distinguishes PUFs perfectly, then the PUF supports
only one independent CRP. The opposite extreme case is a set of measurements
A = fMjgnj=1 that can be represented as an extremely coarse partitioning of

K, say jM (j)
1 j = jM (j)

2 j = jKj=2, where the combined measurements (M1 _ : : : _
Mn) suÆce to distinguish all elements of K. In this case a minimum of log jKj
measurements is needed to reveal all details of the PUF. For good PUFs, all
available measurements are fuzzy, revealing little about the physical structure.

2.3 Optical PUFs

We illustrate De�nition 2 for optical PUFs. As the probing light has wavelength
�, it follows from the theory of electromagnetism [14] that details of size smaller
than � are diÆcult to resolve. It is natural to divide the volume into elements
(`voxels') of volume �3. The number of voxels is Nvox = Ad=�3. In the example
of section 1.3 we have Nvox = 8 � 109 and a total number of 4 � 1012 voxels in the
whole PUF. For the sake of simplicity, we assume that light can only distinguish
whether a voxel contains a scatterer or not. Hence, the information content of a
voxel is at most 1 bit, and the PUF can be represented as a bit string of length
Nvox. The entropy derived from the probability distribution � is5 H(K) = Nvox.

A is the full set of non-compound measurements that can be performed by
means of a beam of monochromatic light. Combining all these available mea-
surements, the maximum amount of information hA(K) that can be extracted
from the PUF is H�(K) = Nvox. The couple (K;A) as de�ned here is used in
the remainder of the text.

3 Security analysis

3.1 Security parameter C

The main goal of this paper is to estimate the number of independent CRPs. This
number is denoted as C. It represents the minimal number of CRP measurements
that an attacker has to perform to characterize the PUF.

De�nition 4 Measurements M1; : : : ;Mt are mutually independent i�

hM1_:::_Mt
= hM1

+ � � �+ hMt
:

Note that hM1_:::_Mt
= t � hM1

if all measurements give the same amount of
information, which by symmetry arguments is a reasonable assumption.

Independent measurements are also called independent CRPs since responses
are implicitly incorporated in de�nition 4. In words, knowledge of independent

5 It is possible to re�ne this model, taking into account the number of photons taking

part in the measurement process. This gives rise to an extra factor proportional to

the log of the number of photons. We will not discuss this re�nement.



CRPs fMjgj 6=i does not give any information about the response to the i'th
challenge. The number of independent CRPs is hence naturally de�ned as

C =
hA(K)
hM(K) =

hA(K)
H(R)

; (5)

where M 2 A and H(R) denotes the information content of a response. The
second equality in (5) follows from (2). As we have already argued that hA(K) =
Nvox, the remainder of this section focusses on the computation of H(R).

In practice the independent challenges may turn out to be very complicated
combinations of basic challenges. However, for the security analysis it is not
necesary to have precise knowledge about them. The number C provides a basic
security parameter which is not a�ected by technological and computational
advances. An \adaptive chosen plaintext" attack (in the PUF context: trying to
model a PUF by collecting responses to self-chosen challenges) requires at least
C speckle pattern measurements, irrespective of the attacker's capabilities.

In practice many mutually dependent challenges may be used safely by the
veri�er. Even if some mutual information exists between the responses, it is
computationally hard to exploit it, since that would require a characterisation
of the physical function. It is not a priori clear how much mutual information
between responses can be tolerated before the system becomes insecure, only that
the answer depends on the capabilities of the attacker and that the `safe' number
of challenges is proportional to C. Therefore, the best available measure of the
security level o�ered by a PUF is the parameter C, the number of challenges
that can be used safely if the attacker has in�nite computation power.

3.2 Speckle pattern entropy

In order to de�ne the information content H(R) of a speckle pattern, we inves-
tigate the physics of multiple coherent scattering and speckle formation. Based
on the physics, we turn this problem into a counting problem of the distinguish-
able photon states in the light leaving the PUF. First, we show that the PUF
can be modeled as a strongly scattering waveguide of thickness d, cross-section
A = W 2 and scattering length `, satisfying � � ` � d. The waveguide allows
a number of transversal modes Nmod. The scattering process is represented by
an Nmod � Nmod random scattering matrix Sab, specifying how much light is
scattered from incoming mode b to outgoing mode a. Given a single incoming
mode, the speckle pattern is fully determined by one column of the S-matrix.
Hence the question is how much information is contained in one such column.

Then we calculate the speckle pattern entropy in the case where all S-matrix
elements are independent. This yields an upper bound on H(R). In this calcu-
lation, the �niteness of the speckle pattern entropy is ultimately based on the
discretisation of light in terms of photons. Finally, we take correlations between
the matrix elements into account to compute a lower bound on H(R).



Wave guide model

First, we compute the number of incoming and outgoing modes Nmod. The
complex amplitude of the electric �eld at the PUF surface can be represented as

E(r) =

Z
jqj�k

d2q

(2�)2
~E(q)eiq�r ; ~E(q) =

Z
jxj;jyj�W=2

d2r E(r)e�iq�r; (6)

where r = (x; y) denotes the position and q = (qx; qy) the lateral wave vector.
A mode is propagating if the longitudinal (z) component of the wave, qz =p
k2 � q2, is real (where k = 2�=�). Hence the integration domain is a circle in

q-space with radius k. Note that both E(r) and ~E(q) are band-limited functions.
Applying the Shannon-Whittaker sampling theorem [14] to the expression for
~E(q) in (6), it follows that ~E(q) can be characterized by discrete samples,

~E(q) =

1X
ax;ay=�1

~E(ax
2�

W
; ay

2�

W
)
sin(qxW=2� ax�)

qxW=2� ax�

sin(qyW=2� ay�)

qyW=2� ay�
:

Next, we use the fact that the electric �eld is band-limited in q-space as well. The
integers ax; ay have to satisfy (a2x + a2y)(2�=W )2 � k2. The number of modes
is therefore �nite and is given by the number of pairs (ax; ay) satisfying the
momentum constraint jqj � k. Denoting the transverse modes as qa, we have

6

qa =
2�

W
(ax; ay) ; Nmod = #

�
(ax; ay) with jqaj � k

	
=

�A

�2
: (7)

The integers ax, ay lie in the range (�W=�;W=�). In the example of section 1.3
there are Nmod = 1:3 � 107 transversal modes. The angular distance between
outgoing modes corresponds to the correlation length present in the speckle pat-
tern as derived by [15]. The scattering process can be represented as a complex
random matrix S, whose elements map incoming states to outgoing states,

~Eout
a =

NmodX
b=1

Sab ~E
in
b : (8)

We take the distribution function of S to be symmetric in all modes. We intro-
duce Tab = jSabj2, the transmission coeÆcient from mode b to mode a, which
speci�es how much light intensity is scattered. Given a basic challenge, consist-
ing of a single incoming mode b, a speckle pattern corresponds to an Nmod-
component vector v, namely the b'th column of the T -matrix,

va = Tab; b �xed: (9)

Hence, the entropy of the response is given by H(v). Because of the mode sym-
metry in the distribution of S, the entropy does not depend on b. In the more

6 If polarisation is taken into account, the number of modes doubles. In this paper we

will not consider polarisation.



general case where the challenge is a linear combination of basic challenges, one
can always perform a unitary transformation on the modes such that the chal-
lenge is given by a single mode in the new basis. The response is then a single
column of the transformed matrix S0. Since S0 has the same probability distribu-
tion as S, the entropy contained in one column of S0 is the same as the entropy
of one column of S. Hence, H(v) (9) is valid for composite challenges as well.

Weak PUFs: Upper bound on H(R)

Here we derive an upper bound for the entropy of a speckle pattern. We start
with a simpli�ed situation, assuming the outgoing modes to be independent. This
is generally not true but it gives an upper bound on H(R) and hence a lower
bound on C. For this reason we refer to such a PUF as a weak PUF. It is clear
that a speckle pattern cannot carry more information than the light leaving the
PUF. We therefore derive an upper bound on the information content of Nmod

light intensity states. Although the physics of multiple scattering is classical, we
need the quantum description of light in terms of photons for our computation.7

We have to count the number of distinguishable ways in which N' photons can
be distributed overNmod outgoing modes. To this end we estimate the number of
distinguishable photon states (energy levels) Nstates in one mode. The energy in
the mode is Nh=�, 8 where N is the number of photons in the mode. We restrict

ourselves to the case of photon number statistics governed by


N2

�
�hNi2 = hNi

without thermal noise. This Poisson relation holds for lasers and thermal light at
room temperature. The more general case is treated in [14]. The energy states
have a width of approximately 2

p
N . Given the level density 1=(2

p
N), the

number of distinguishable energy levels with photon number lower than N is

Nstates �
Z N

0

dx

2
p
x
=
p
N: (10)

The energy level of the i'th mode is denoted by the integer Li and the corre-
sponding number of photons by ni � L2

i . We assume that all con�gurations fnig
have the same probability of occurring, as long as they satisfy the conservationP

i ni = N'. From (10) we see that this translates to
P

i L
2
i = N'. Hence, the

number of distinguishable con�gurations is given by the area of a section of an
Nmod-dimensional sphere of radius

p
N' (the section with positive Li for all i).

The area of an n-sphere is 2�n=2rn�1=� (n=2). Our upper bound on H(R) is

Hup(R) � log

�
( 1
2 )
Nmod2�

1
2
Nmod

p
N'

Nmod�1
=� ( 1

2Nmod)

�
: (11)

Since Nmod is large, we can use Stirling's approximation and obtain

Hup(R) � 1
2
Nmod log

�
1
2
�eN'=Nmod

�
: (12)

7 A similar situation arises in statistical mechanics, where a discretisation of classical

phase space, based on quantum physics, is used to count the number of microstates.
8 h denotes Planck's constant.



We have assumedN' > Nmod, so the log in (12) is positive. The entropy increases
with the number of photons, but only in a logarithmic way. Hence, errors in
estimating N' will have a small e�ect on Hup(R). The number of participating
photons is proportional to the measurement time 4t,

N' = P4t � �=(hc); (13)

where c is the speed of light. In principle, it is possible to completely characterize
the PUF by performing a single very long measurement. However, as seen from
(13) and (12), substituting Hup(R) ! H(K), 4t is then exponential in H(K).
Information can be extracted from the PUF much faster, namely linearly in 4t,
by doing many fast measurements. Using the example numbers of section 1.3,
we have N' = 2:5 � 1012 and the upper bound is Hup(R) < 1:2 � 108.

Strong PUFs: Lower bound on H(R)

In multiple scattering PUFs, the modes at the outgoing surface are correlated.
In [16] a correlation function was obtained for the elements of the T -matrix,

hÆTabÆTa0b0i
hTabi hTa0b0i

= D1Æ4qa;4qb
F1(

d

2
j4qbj) (14)

+
D2

4gNmod

�
F2(

d

2
j4qaj) + F2(

d

2
j4qbj)

�
+

D3

(4gNmod)2

where ÆTab = Tab� hTabi, h�i is the average over all scatterer con�gurations and
F1(x) = x2= sinh2 x ; F2(x) = 2=(x tanhx)� 2= sinh2 x (15)

with4qa = qa0�qa, g the transmittance N�1
mod

P
ab Tab � `=d, and Di constants

of order unity. Due to the correlations, the number of degrees of freedom Nout
dof in

the speckle pattern is less than Nmod. We calculate Nout
dof following the approach

of [8], but we make use of (14). We sum over the correlationsin the vector v to
obtain the e�ective cluster size �. � represents the number of variables correlated
to a given va (for arbitrary a). The vector v can be imagined to consist of
uncorrelated clusters of size �, where each cluster contains exactly one degree
of freedom. This means that we approximate v by a vector of Nout

dof = Nmod=�

independent cluster-size entries. Denoting the variance of va as �a and neglecting
the D3 term, the correlations within v, obtained from (14), are given by

Caa0 = hÆva Æva0i=(�a�a0) = Æaa0 +D2=(D14gNmod)
�
4
3 + F2(

1
2djqa � qa0 j)

�
: (16)

The D2 term consists of the sum of a short-range (F2) term and a long-range
contribution (4=3). From (16) we obtain � and the number of degrees of freedom,

� =
X
a

Caa0 � D2

3D1

d

`
; Nout

dof =
Nmod

�
� 3D1

D2

�A

�2
`

d
: (17)

Here we have neglected the summation over the F2-term, since F2(x) asymp-
totically falls o� as 2=x for large x. We have also neglected the contributionP

a Æaa0 = 1 with respect to d=`.



The speckle entropy is calculated by repeating the level counting computation
of the `Weak PUFs' section, but now with modi�ed parameters. Every output
mode within a cluster of size � emits exactly the same amount of light. Conse-
quently, the problem of distributing N' photons over Nmod modes is equivalent
to the problem of distributing N'=� bunches of � photons overNmod=� clusters.
Performing the substitution fNmod!Nmod=�;N'!N'=�g into (12) we obtain

Hlow(R) =
Nout
dof

2
log

�
�e

2

N'

Nmod

�
=

3�D1

2D2

A`

�2d
log

�
�e

2

N'

Nmod

�
: (18)

Substituting into (18) relation (13) and the numbers given in section 1.3, we
have Hlow(R) � 4 � 106: By assuming that several modes carry the same photon
state, we have underestimated Nout

dof . Therefore, the result (18) is indeed a lower
bound on H(R). Furthermore, we have assumed that all the information present
in the outcoming light is recorded by an ideal detector, capturing all the light
in a sphere surrounding the PUF. This is the optimal situation for an attacker.
Hence we err on the side of safety.

3.3 The security parameter

We now use the results of section 3.2 to estimate the security parameter. We
assume that we are in the regime where the PUF can be probed to such an
extent that all bits can be determined by measurements. In this regime we have
C = H(K)=H(R), and after substitution of the upper bound (12) and the lower
bound (18) for H(R) we �nd that C lies in the interval

(min

(
2

�
� 1

log(�e
2

N'

Nmod

)
� d
�
; Nmod

)
;min

(
2

3�
� 1

log(�e
2

N'

Nmod

)
� d

2

�`
; Nmod

)
)

(19)
The minf� � � ; Nmodg function reects the fact that there are no more than Nmod

basic challenges. The result (19) has the following properties:

{ C grows with increasing d=�, since the PUF entropy is proportional to d=�.
{ In addition, the upper bound on C grows with increasing d=`. This is a
measure for the number of scattering eventsNsc taking place before a photon
exits the PUF. (Assuming a random walk, d=` / p

Nsc). Hence, multiple
scattering increases the cryptographic strength of a PUF.

{ (19) refers to one illuminated area A = W 2. By shifting the laser over a
distance equal to the diameter of the laser spot, one illuminates a new sub-
volume of the PUF with the same number of challenges. This means that
the total number of independent challenges Ctot is given by

Ctot = C � APUF=A: (20)

Using the numbers from section 1.3, (19) gives 3 � 104 � Ctot � 1 � 106. In order
to achieve this many distinct challenges in practice, an angular accuracy of laser
positioning is required of the order of 1 mrad. This is easily achievable.



We emphasize once more that the security parameter has been computed from
an information-theoretic point of view. This means that an attacker who has
gathered Ctot CRPs in principle knows the complete CRP behaviour. He is in
principle able to compute the response to a new challenge (one for which he has
not seen the response before). In practice the security might be much stronger
and is based on the following assumptions: (i) the so-called forward problem

(computing the response for a given challenge) is diÆcult and (ii) interpolation
techniques do not allow for an accurate prediction of a response, given responses
to nearby challenges. This means that one can use more than Ctot CRPs safely.

Finally, we compare our result (19) to [3, 4]. Their approach is based on the
memory angle Æ� / �=d [16] and does not take the density of scatterers into
account. Dividing the half-sphere into pieces of solid angle Æ�2, they obtain a
number of CRPs proportional to d2=�2, representing the number of obtainable
responses that look mutually uncorrelated. This number is larger than our upper
bound for C by a factor / `=�. The two approaches give comparable results only
in the limit of extremely strong scattering, ` � �.

4 Attacks and countermeasures

We discuss the following threat. An attacker steals somebody's PUF and tries
to characterize the PUF without being noticed by the owner. In particular this
means that the PUF has to be returned to the owner within a short time period.

4.1 Brute force

It follows from the de�nition of C that in principle only C measurements are
required to fully characterize a PUF. However, an attacker faces the problem that
CRP intrapolation is diÆcult. Consequently, a brute force attack may be more
feasible. The brute force attack is an attempt to exhaustively record the full set
of CRPs. The responses are stored in a database. Let us assume that a challenge
takes the form of a single incoming transverse momentum mode; it is clear that
the number of possible challenges is of order Nmod. The required storage space
is relatively small, since it is not necessary to store complete speckle patterns,
but only the keys/identi�ers derived from them. The measurement duration for
this attack is Nmod4t �APUF=A = �APUF4t=�2. Using the wavelength and the
PUF area from the example in section 1.3, and taking 4t of the order of 10ms,
we have a total duration in the order of hundreds of days. This is too long for
the attack to go unnoticed in the scenario sketched above.

We emphasize the necessity of enforcing \long" measurement times 4t.

4.2 The Slow PUF

A long integration time in the detector can be achieved by attaching a gray �lter
(irremovably) to the PUF. Let us denote the transmission of the combined PUF
and gray �lter by �PUF. In the detector the incoming photons are converted to



electrons with quantum eÆciency �Q. The actual signal of each detector cell is
the number of electrons Ne collected in time 4t. The number of cells in the
detector is denoted as Ncells. The generation of photo-electrons is a Poisson
process, 


N2
e

�
� hNei2 = hNei =

�QN'

Ncells
=

�Q�PUFP

Ncells(hc=�)
4t: (21)

The signal to noise ratio SNR can at most be equal to hNei2 =(


N2
e

�
� hNei2) =

hNei, since there may be other noise sources which are not taken into account
here. Hence, (21) gives a lower bound on4t, proportional to the SNR. According
to Shannon's theorem [12], the number b of useful bits that can be extracted from
any signal is limited in the following way,

b � 1
2
log(1 + SNR): (22)

In our case, b represents the number of bits used for gray level representation.
Combining (21) and (22) we obtain

4t � (hc=�)Ncells

�Q�PUFP
(22b � 1): (23)

For example, taking �Q = 0:3, �PUF = 0:001, Ncells = 3 � 106 and b = 4 in the
example of section 1.3, we get 4t � 1ms.

This gives a fundamental physical lower bound on the integration time, which
can therefore never be reduced by technological advances. Given a challenge-
response setup with �xed P and �Q, (23) shows that the integration time can
be increased in the following ways: (i) by decreasing the transmission �PUF, (ii)
by increasing the number of gray levels 2b that should be detected in order to
correctly process the speckle pattern and (iii) by increasing the number of pixels
that should be resolved by the detector to ensure correct processing. All three
methods have their limitations.

An attacker can of course use the best detector in existence (high �Q). He can
also use any laser that he desires (high P ). Especially the use of a high-intensity
laser can dramatically shorten the integration time. This can be prevented by
adding to the PUF a photo-layer which darkens (permanently or temporarily)
when irradiated by light above a certain threshold intensity.

5 Conclusions

We have introduced a general theoretical framework to study the secret key
capacity of PUFs. We propose to use the number C of independent CRPs as
a security parameter. This parameter represents a security measure that is not
a�ected by technological or computational advances. In practice one may use
many more CRPs safely, under the assumption that correlations between CRPs
are hard to exploit computationally.

For optical PUFs we have derived an analytical expression for C. In order to
make brute force attacks diÆcult, long measurement times have to be enforced.
This has been analyzed for the case of optical PUFs.
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